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Abstract. We investigate the relation between the magnetocrystalline anisotropy energy (MAE)
and the electronic structure for transition metal thin films and surfaces which can display
enhanced orbital magnetic moments. When the spin–orbit interaction is treated in second order,
the MAE is proportional to the expectation value of the orbital magnetic moment as given by
Bruno’s model. However, there are additional terms which are related to the spin-subband
orbital moment and to the magnetic dipole operator due to the anisotropy of the field of the
spin. The latter term accounts for the spin-flip excitations between the exchange split majority
and minority spin bands. A conjecture is proposed which relates the MAE to the expectation
values of the orbital moments and the magnetic dipole term. It is shown how the different terms
can be obtained experimentally with (transverse) magnetic circular x-ray dichroism. The model
explains the experimentally observed perpendicular magnetic anisotropy in Co and Fe based
multilayers and thin films.

1. Introduction

Conventional magnetism has ignored the anisotropy of the spin moment, and so far,
not much is known about the factors which influence the magnetization of thin films,
multilayers and interfaces. Yet the ability to grow thin epitaxial films has led to materials
with novel magnetic properties, such as perpendicular magnetic anisotropy (PMA), giant
magnetoresistance (GMR) and exchange biasing, with immediate technological applications.
The preferred orientation of the magnetization is determined by the magnetocrystalline
anisotropy energy (MAE), which is the change in the free energy for a crystal upon rotation
of the magnetization. In thin films and multilayers the MAE is usually strongly different
from the bulk due to the symmetry breaking. By varying the individual layer thickness and
choice of the appropriate elements, it is possible to manipulate the magnetic anisotropy.
A dramatic manifestation in this respect is the change of the preferential direction of
the magnetization from the commonly observed in-plane orientation to the perpendicular
direction [1, 2].

The exchange interaction is invariant for a rotation of the direction of the quantization
axis of the spin, i.e. the magnetization direction. Therefore, the exchange interaction cannot
explain the MAE. An interaction is required which couples the spins with the crystalline
field. This would suggest that the MAE is due to the interatomic dipole–dipole interaction
between the spins, which lead to a macroscopic shape anisotropy that is proportional to the
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square of the saturation value of the magnetization [3]. Calculations of the surface shape
anisotropy, however, show that this contribution is several orders too small to explain the
experimental results [3–5], and that other sources of anisotropy are apparently dominant. In
any case the surface shape anisotropy cannot explain the PMA observed in thin films.

Van Vleck [6] attributed the physical origin of the MAE to the spin–orbit coupling.
This interaction can be interpreted as the coupling between the spin of the electron and the
magnetic field created by its own orbital motion around the nucleus. The orbital motion
is coupled to the lattice via the electric potential of the ions. The spin–orbit interaction is
large in the neighbourhood of the nucleus, where the potential is spherical symmetric, so
that it can be considered as a localized interaction.

The ideas of Van Vleck were extended to itinerant ferromagnets by Brooks [7] using a
semi-empirical band structure model. Only recentlyab initio relativistic Dirac calculations
have been used to obtain the MAE of transition metals [8]. However, such calculations are
not reliable for cubic transition metals, where the small value for the MAE, in the order of
µeV, is obtained by subtracting two large numbers, in the order of eV, for the total energies
of the different magnetization directions. First-principles calculations in the local density
approximation (LSDA) have predicted a wrong easy direction in Co and Ni metal [9]. Even
at surfaces and interfaces where the MAE is an order of magnitude larger, these calculations
are not completely reliable. Also for the orbital moment the situation is unsatisfactory. For
Ni the theoretical value agrees with experiment, but for Fe and Co they are roughly half
the experimental values. Including the orbital polarization term adopted from atomic theory
results in a correct value of the orbital moment for Co and Fe, but a value twice too large
for Ni metal. A further problem is that the number ofk points in the calculation has to
be very large in order to obtain a stable result for the MAE [10]. Therefore, Wanget al
[11] proposed the so-called state-tracking method, which avoids regions ink space where
the orbital moment is degenerate, because their first-order contribution can lead to large
fluctuations in the calculated MAE as a function of band filling. Daalderopet al [12] have
argued that this method is unjustified and even unnecessary.

We will investigate the situation where the spin–orbit interaction is small compared to
the bandwidth. In 3d transition metals the spin–orbit constant is between 40 and 80 meV
[13], which is small compared with the bandwidth of a few eV, so that in this case a
perturbative treatment is justified. For rare earths the situation is completely different and
the reader is referred to [14] and [15]. Using perturbation theory Bruno [16] showed how
the dependence on the electronic structure can be separated from the angular dependence.
The latter dependence has been discussed in detail in [17] and [18]. The separation makes
it possible to calculate the different anisotropy constants directly from the unperturbed band
structure [19]. The advantage of perturbation theory is that it allows to calculate directly
the anisotropy constants without calculating explicitly the total energy of the system as
a function of the direction of the magnetization. However, it does not take into account
any changes of the Fermi surface. Bruno [16] showed that if the majority spin band is
completely filled the MAE is proportional to the orbital magnetization. Wanget al [20]
showed that there is also an additional contribution to the MAE due to a spin-flip term,
which can be related to the quadrupole moment of the ground state.

The spin and orbital magnetic moment and the magnetic dipole term of the ground state
are given by the expectation values of the vector operatorsS, L andT , respectively [21].
Similarly, the charge density and its anisotropy are determined by the expectation values
of the number of holes,nh, and the quadrupole moment,Q, respectively [22].T is due to
the anisotropy in the spin moment, which can be induced either by an anisotropic charge
distribution or by spin–orbit interaction. Although the spin anisotropy is a fundamental
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part of the description of the electronic ground state, it does not contribute to the magnetic
moment as measured by more traditional techniques which are relying on the isotropic
exchange interaction. However, physical properties, such as the MAE, will depend on the
anisotropy in both the orbital magnetic moment and the spin moment. The value ofT ,
which is small in cubic systems, can be strongly enhanced at surfaces and interfaces due to
symmetry breaking. Its expectation value will also be larger in 4d and 5d transition metals
compared to 3d transition metals, becauseT contains a contribution which depends on the
magnitude of the spin–orbit interaction, as has been observed in the case of actinides, where
T can exceed the value ofL [23, 24]. We will outline how these different moments can
be obtained experimentally in section 4.2, after we have established in section 3 which of
these quantities are important from theoretical perspective.

Magnetic moments at the surface and in thin films and interfaces are often, but not
always, enhanced. A simple reason for this is the reduced coordination number at the
surface, which results in a narrowing of the d band width [25]. A large enhancement in the
spin magnetic moments of 3d transition metal surfaces has been predicted by band structure
models [26]. Only recently it was realized that also the orbital magnetic moment can be
strongly enhanced. The first experimental evidence was obtained by van der Laanet al [27],
who observed an enhancement of the orbital moment for a Ni(110) surface using magnetic
circular dichroism in photoemission at the Ni 2p core level. More recently, enhanced orbital
moments were also observed with MCXD for Co on Cu(100) by Tischeret al [28] and for
Co-based nanostructures by Dürr et al [29].

Various reasons have been put forward to explain the enhancement of the orbital moment
at the surface:

(i) At the surface the d band is narrower, resulting in an increase of the spin magnetic
moment. The spin–orbit interaction couples the orbit to the spin moment, so that the orbital
magnetic moment will increase with the spin magnetic moment [30].

(ii) The symmetry is reduced at the surface, which can remove the quenching of the
orbital moment, that often occurs in high lattice symmetries, such as cubic structures.

(iii) The density of states at the Fermi level can be larger than in the bulk, increasing
the orbital magnetic moment.

(iv) Surface roughness, interdiffusion, steps and terraces increase the electron
localization, leading to more localized atomic wavefunction with increased orbital moments
compared to the bulk.

(v) Thin films can give a confinement of the electronic wavefunction leading to
symmetry breaking and localization.

(vi) Thin films can show a strain-induced anisotropy due to the lattice mismatch of
the substrate, which breaks the lattice symmetry of the film. An example is Ni/Cu(001)
which shows PMA between 7 and 56 ML. It grows pseudomorphic with∼2.5% elongated
Ni–Ni distance in plane and a reduced layer spacing normal to the surface, i.e. an artificial
structure with face-centred tetragonal (fct) symmetry is created. In the fct structure the
orbital moment is no longer quenched.

In this paper we are particularly interested in the origin of the MAE at the surface and
in thin films and multilayers. In section 2 we will first discuss the orbital degeneracy, which
is important in order to understand the symmetry aspects involved in the problem. We also
show using general symmetry arguments that an exact expression for the MAE in terms of
magnetic ground state moments cannot be obtained. In section 3 we give a derivation of
the different terms appearing in the expression of the MAE. We extend the model given
by Bruno by including the majority spin band orbital moment and spin-flip excitations.



3242 G van der Laan

A discussion is given in section 4, where we show how the different terms can be obtained
experimentally with (transverse) magnetic circular x-ray dichroism and we present a phase
diagram for the magnetic preference of a thin film. Conclusions are drawn in section 5.

2. Orbital degeneracy

Van Vleck [31, 32] has already showed for a free ion that the absence of orbital degeneracy
is a sufficient condition for the quenching of the orbital moment, which means that the
first-order contribution should vanish:〈9|Lζ |9〉 = 0. This can be seen as follows. Let
9 be a non-degenerate eigenstate of the system. When spin-dependent interactions can
be neglected, the HamiltonianH will be a real operator. We can then assume that8 is
real, because if it was complex of the formψ1 + iψ2 andH real, ψ1 andψ2 would be
separately eigenfunctions ofH with the same energy and the level would be degenerate, in
contradiction with the initial assumption. However, the angular momentum operator,L, is
purely imaginary, so that the expectation value of any of its components taken over a real
wavefunction is imaginary. On the other hand, sinceL is Hermitian, this expectation value
must be real, therefore, it must vanish. The quenching of the orbital moment shows that
the influence of the surroundings is of prime importance on the magnetic properties of an
ion, and that there is a close connection between magnetism and degeneracy. The rotational
symmetry in a free ion corresponds to a degeneracy, which, in a lower symmetry, may be
lifted partially or totally, resulting in a change of the magnetic properties of the ion.

An electron in a particular orbital will have an orbital angular momentum along a given
axis, when by rotation about that axis, the orbital can be transformed into an equivalent
and degenerate orbital which does not contain an electron with the same spin [33]. Such a
transformation will allow the electron to rotate about the axis, i.e. the electron has an orbital
moment along the axis. For instance, a rotation of 45◦ about thez axis will turn thexy
orbital into thex2− y2 orbital, whereas a rotation of 90◦ changes thexy orbital into theyz
orbital. Thus one would expect an orbital moment from an electron in either of these pairs
of orbitals. The 3z2− r2 cannot be transformed into any of the other orbitals by a rotation
about thez axis, thus will not give an orbital moment in thez direction. A cubic crystal field
removes the degeneracy of the d orbitals, resulting in representations T2 (xy, yz and zx)
and E (3z2−r2 andx2−y2), which are separated in energy by the crystal field parameter1.
The degeneracy of thexy andx2−y2 orbitals is destroyed, and, in second order, the orbital
contribution is reduced by a factor 2ξ/1, whereξ is the spin–orbit parameter (ξ � 1).
Because the 3z2− r2 andx2− y2 orbitals cannot be transformed into each other by rotation
about any axis, the E representation can have no orbital moment. However, thezx andyz
orbitals are still degenerate and can give an orbital moment. Thus a crystal field gives a
reduction of the orbital moment depending on its symmetry and strength.

The symmetry aspects involved in the quenching of the orbital moment can also
be captured by a more general rule. Once we know the behaviour of a certain
operator in spherical symmetry (SO3), the influence of the crystal field can be determined
using the Wigner–Eckart theorem [34]. In spherical symmetry the matrix element
〈LSJ |lxsyj z|L′S ′J ′〉 of a coupled operatorlxsyj z is non-zero only if

C(LxL′)C(SyS ′)C(J zJ ′) 6= 0 (1)

whereC(lkm) is the 3j factor of the irrepsk, l andm in the chosen symmetry group,
which is only non-zero when the Kronecker product over the three irreps exists. Therefore,
C(LxL′), C(SyS ′) and C(JzJ ′) must be non-zero, which results in the selection rules
1L = 0,±x, 1S = 0,±y and1J = 0,±z.
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For the orbital moment operator we havex = 1, y = 0 andz = 1. In a basis0S, where
1 branches to the representationγ , a matrix element is non-zero whenC(0γ0′) contains
the totally symmetric representation. The first-order interaction is given by the diagonal
matrix elements, where the Kronecker products0×0 must containγ . In the group Cs, Cn,
Cnh and S2n the set ofγ contains the totally symmetric representation, so that this condition
is met for all terms. In the cubic group the diagonal elements of the orbital momentum
operator vanish only for the representation E, since E× T1 × E has no totally symmetric
component.

The MAE is determined by the spin–orbit interaction withx = 1, y = 1 andz = 0, so
that the orbital selection rule is the same as for the orbital moment operator, but the spin
selection rule is relaxed, allowing for spin-flip transitions. Whereas the spin–orbit operator
is a scalar, the orbital moment operator is represented by an axial vector, which changes
sign under time reversal. Differences in symmetry between the ground state operators
prohibit writing down a exact relation, so that—at best—only an approximate relation can
be postulated.

3. Theory

3.1. Ground state properties

A few remarks about the properties of the ground state are in order to understand the
following theory [21]. The main purpose of this section is to derive for itinerant transition
metals a conjecture which relates the MAE with the expectation values of the ground
state momentsL andT . First we will derive expressions for the second-order spin–orbit
contribution of both the MAE and the orbital magnetic moment. We shall see that the MAE
contains a spin-flip term which cannot be described by the orbital moment operator since
the latter does not act on the spin. We therefore postulate a term proportional toT which
can account for most of the remaining MAE. Since the energy is a scalar the moments in
the expression will enter aŝS ·L andŜ ·T , whereŜ is the magnetization direction which
is along the unit vector of the spin magnetic moment,Ŝ = S/S. This is possible because
S represents the isotropic spin distribution. The anisotropic part of the spin distribution
is given byT = Ŝ − 3r̂(r̂ · S), where r̂ is the position unit vector [35, 36]. When the
spin–orbit coupling is small we can write [37]

T ≈ − 2
7Q · Ŝ (2)

whereQ is the quadrupole moment of the charge distribution

Q = L2− 1
3L

2 (3)

which is a traceless spherical tensor of rank 2.

3.2. Electronic structure

We consider a d band metal with eigenfunctions|k, n, σ 〉 and eigenvaluesεn,σ (k) as the
Fourier transform of the Bloch functions|k, µ, σ 〉

|k, n, σ 〉 =
∑
µ

an,µ,σ (k)|k, µ, σ 〉 (4)

wherek is the electron wave vector,µ represents the d orbitals{xy, yz, zx, x2−y2, 3z2−r}
andσ is the spin.
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The density of states for the state with spinσ is

nµ,µ,σ (k, ε) =
∑
n

a∗n,µ,σ (k)an,µ,σ (k)δ(ε − εn,σ (k)) (5)

where we used two different orbitals indices,µ andµ, to allow for orbital degeneracy. The
intra-atomic spin–orbit interaction is given by

Hso= ξ
∑

µ1,µ2,σ1,σ2

〈µ2, σ2|L · S|µ1, σ1〉
∑
k

c†µ2,σ2
(k)cµ1,σ1(k) (6)

wherec† andc are creation and annihilation operators, respectively.ξ ≡ ξ(r) is the radial
part of the spin–orbit interaction. BecauseHso is a one-electron operator diagonal ink, the
only excited states that have to be considered are those that couple to the ground state with

|ex〉 = c†n2,σ2
(k)cn1,σ1(k)|gr〉 (7)

where the subscripts 1 and 2 refer to the occupied and unoccupied states, respectively, and

εn1,σ1(k) < εF < εn2,σ2(k) (8)

with εF the Fermi level.

3.3. MAE

The second-order contribution to the energy is

δE =
∑

ex

〈gr|Hso|ex〉〈ex|Hso|gr〉
Egr− Eex

. (9)

Substitution of∑
ex

|ex〉〈ex| =
∑

k,n1,σ1,n2,σ2

c†n2,σ2
(k)cn1,σ1(k)|gr〉〈gr|c†n1,σ1

(k)cn2,σ2(k)| (10)

together with (6) into (9) and introducing the shorthand notationθ = µ1, µ1
, µ2, µ2

to
define

A(θ, σ1, σ2) ≡
∫
ε1<εF<ε2

dε1 dε2

ε2− ε1

∑
k

nµ1,µ1
,σ1(k, ε1)nµ2,µ2

,σ2(k, ε2) (11)

we obtain

δE = −ξ2
∑
θ

[A(θ,↑,↑)〈µ
1
,↑ |L · S|µ

2
,↑〉〈µ2,↑ |L · S|µ1,↑〉

+A(θ,↓,↓)〈µ
1
,↓ |L · S|µ

2
,↓〉〈µ2,↓ |L · S|µ1,↓〉

−A(θ,↑,↓)〈µ
1
,↑ |L · S|µ

2
,↓〉〈µ2,↓ |L · S|µ1,↑〉

−A(θ,↓,↑)〈µ
1
,↓ |L · S|µ

2
,↑〉〈µ2,↑ |L · S|µ1,↓〉] (12)

which gives the energy contribution as a sum over terms which are split in a factor that
depends on the occupation numbers and energies of the spin orbitals and an angular factor
containing the matrix elements.

The energy gain can be visualized as caused by virtual excitations from a degenerate
occupied level with spinσ1 and orbitals charactersµ1 andµ

1
to an unoccupied level with

spinσ2 and orbital charactersµ2 andµ
2
. Figure 1 gives a graphical representation for such

a second-order excitation.
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Figure 1. Graphical representation of the second-order contribution to the MAE due to virtual
excitations from a degenerate occupied level with spinσ1 and orbital charactersµ1 andµ

1
to

an unoccupied level with spinσ2 and orbital charactersµ2 andµ
2
. The arrows are pointed

towards the conjugate states.

3.4. Orbital moment

We can write the expectation value of the orbitals magnetic moment in second-order
perturbation theory as

〈L〉 =
∑

ex

〈gr|L|ex〉〈ex|Hso|gr〉
Egr− Eex

(13)

where the orbital moment operator is

L = 4
∑

µ1,µ2,σ,ζ

〈µ2|Lζ |µ1〉
∑
k

c†µ2,σ
(k)cµ1,σ (k). (14)

BecauseL does not change the spin, only excited states with the same spin can be reached,
therefore in the scalar product

L · S = LζSζ + 1
2(L+S− + L−S+) (15)

contained inHso only the termLζSζ will survive. Equation (13) can then be written as

〈L〉 = −4ξ
∑
θ,σ

A(θ, σ, σ )〈µ
1
|L|µ

2
〉〈µ2|L|µ1〉〈σ |S|σ 〉

= − 4ξ
∑
θ

[A(θ,↑,↑)− A(θ,↓,↓)]〈µ
1
|L1|µ2

〉〈µ2|L|µ1〉 · Ŝ (16)

so that the orbital moment projected on the magnetization direction becomes

Ŝ · 〈L〉 = −4ξ
∑
θ

[A(θ,↑,↑)〈µ
1
,↑ |L · S|µ

2
,↑〉〈µ2,↑ |L · S|µ1,↑〉

−A(θ,↓,↓)〈µ
1
,↓ |L · S|µ

2
,↓〉〈µ2,↓ |L · S|µ1,↓〉] (17)

which can be compared with the expression for the MAE in (12). If we neglect the spin-flip
terms we find

δE ≈ − 1
4ξ Ŝ · [〈L↓〉 − 〈L↑〉] = − 1

4ξ Ŝ · [〈S〉 − 2〈L↑〉] (18)

whereL↓ (↑) is the orbital moment vector of the spin down (up) band. If we assume that the
majority spin(↑) band is completely filled, as in Bruno’s model [16], its orbital moment
vanishes and we obtain thatδE is directly proportional to〈L〉. For metals with a nearly
filled band this might often account for the main contribution to the MAE; however, in
general the three other terms in (12) cannot be ignored.
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3.5. Spin-flip excitations

Whereas in the case ofL we are primarily concerned with low-energy excitations which
conserve the spin moment, the MAE also contains terms where the spin,σ2, of the excited
state is reversed compared toσ1. Such a spin-flip term cannot be described by an orbital
operator, which leaves the spin untouched. Therefore, it seems appropriate to postulate
a term proportional toT which will account for most of the remaining MAE. When the
spin–orbit interaction is small, the two spin bands are separated by the exchange splitting
1Eex. For large1Eex ≡ ε2− ε1 we can write

〈gr|H 2|gr〉
1Eex

= 1

1Eex

∑
ex

〈gr|H |ex〉〈ex|H |gr〉

=
∫
ε2>εF

dε2

∑
k,µ2,µ2

nµ2,µ2
,σ2(k, ε2)

〈gr|H |µ
2
, σ2〉〈µ2, σ2|H |gr〉
1Eex

. (19)

We further define

nµ1,µ1
,σ1 ≡

∫
ε1<εF

dε1

∑
k

nµ1,µ1
,σ1(k, ε1) (20)

as the number of electrons in the ground state with indicated orbital and spin characters.
ForH 2 = Ŝ · 〈T 〉 we can write using (2), (3), (19) and (20)

Ŝ · 〈T 〉 ≈ −2

7
Ŝ · 〈Q〉 · Ŝ = 2

21

∑
µ1,µ1

,σ1

nµ1,µ1
,σ1〈µ1

|L2− 3(L · S)2|µ1〉

= 2

21

∑
µ1,µ1

,σ1

nµ1,µ1
,σ1[〈µ

1
|L|µ

2
〉〈µ2|L|µ1〉 − 3Ŝ · 〈µ

1
|L|µ

2
〉〈µ2|L|µ1〉 · Ŝ]

= 2

21
1Eex

∑
θ

[A(θ,↑,↓)〈µ
1
,↑ |L · S|µ

2
,↓〉〈µ2,↓ |L · S|µ1,↑〉

+A(θ,↓,↑)〈µ
1
,↓ |L · S|µ

2
,↑〉〈µ2,↑ |L · S|µ1,↓〉

−2A(θ,↑,↑)〈µ
1
,↑ |L · S|µ

2
,↑〉〈µ2,↑ |L · S|µ1,↑〉

−2A(θ,↓,↓)〈µ
1
,↓ |L · S|µ

2
,↓〉〈µ2,↓ |L · S|µ1,↓〉]. (21)

The last two terms in (21), which do not reverse the spin, can be removed by considering
an extra term due toH = LζSζ . Using once again (19) and (20) we can write

〈(LζSζ )2〉 =
∑

µ1,µ1
,σ1

nµ1,µ1
,σ1〈µ1

|(LζSζ )2|µ1〉

= 1Eex

∑
θ

A(θ, σ1, σ1)〈µ1
|LζSζ |µ2

〉〈µ2|LζSζ |µ1〉. (22)

3.6. Physical model

Defining the abbreviated notation

a(σ1, σ2) ≡
∑
θ

A(θ, σ1, σ2)〈µ1
, σ1|L · S|µ2

, σ2〉〈µ2, σ2|L · S|µ1, σ1〉 (23)

where we recall that the first spin index refers to that of the occupied level and the second
spin index to that of the unoccupied level, we collect, for ease of comparison, the different
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terms as

δE = −ξ2[a(↑,↑)+ a(↓,↓)− a(↑,↓)− a(↓,↑)] (24)

Ŝ · 〈L〉 ≡ Ŝ · [〈L↑〉 + 〈L↓〉] = −4ξ [a(↑,↑)− a(↓,↓)] (25)

Ŝ · 〈T 〉 ≈ − 2
7Ŝ · 〈Q〉 · Ŝ = 2

211Eex[−2a(↑,↑)− 2a(↓,↓)+ a(↑,↓)+ a(↓,↑)] (26)

〈(LζSζ )2〉 = 1Eex[a(↑,↑)+ a(↓,↓)]. (27)

Since a theoretical model is as good as its physical picture, it is instructive to
visualize the different terms with the help of the virtual excitations introduced in figure 1.
Equation (24) shows that the energy decreases in the presence of excitations that conserve
the spin, but increases for excitations that reverse the spin. Therefore, the easy
direction of magnetization will be in the direction that provides the largest opportunity
for ‘ferromagnetic’ excitations. It is clear from (24) that the energy is invariant for time
reversal, i.e.δE does not change when all spin directions are reversed.

The projected orbital moment,̂S · 〈L〉, in (25) contains only excitations which conserve
the spin. Due to time reversal symmetry the orbital moment changes sign when all spin
directions are reversed. Comparison with the MAE in (24) shows that the orbital moment
operator can only account for the ferromagnetic excitations, and moreover that it gives the
opposite sign for spin up compared to spin down electrons. Therefore, the MAE cannot
simply be taken proportional to the projected orbital moment. Only in the case thata(↓,↓)
is the dominant term, i.e. for a ‘hard’ ferromagnet, we can safely assume that the easy-
magnetization axis is along the direction of the maximum orbital moment.

The magnetic dipole term,̂S · 〈T 〉, in (26) contains both spin conserved and spin-flip
terms, which have opposite sign with respect to each other. Only the quadrupole-induced
part of the spin anisotropy has been taken into account, because the spin–orbit-induced part
of the spin anisotropy is small in 3d transition metals. Since the quadrupole moment
is invariant for time reversal, (21) does not change sign when the spin directions are
reversed. Finally, the squared diagonal spin–orbit interaction in (27) conserves the spin
in the excitation. It shares this property with the orbital moment; however, the latter
reverses in sign for opposite spin directions.

Comparison of (24)–(27) gives the total MAE as

δE ≈ −1

4
ξ Ŝ · [〈L↓〉 − 〈L↑〉] + ξ2

1Eex

[
21

2
Ŝ · 〈T 〉 + 2〈(LζSζ )2〉

]
≡ E↓L + E↑L + ET + ELS. (28)

This conjecture forms the key result of our paper.

4. Discussion

4.1. Angular dependence

The angular dependence ofδE, 〈L〉 and〈T 〉 is constrained by the symmetry of the crystalline
field [3, 17, 18]. We briefly discuss here the angular dependence of the ground state magnetic
moments. Equation (16) can be written in the form

〈L↓(↑)〉 = R↓(↑) · Ŝ (29)

with R a Cartesian tensor. In matrix form (using the Einstein notation) this gives
Li = Rij Ŝj , where i, j ∈ {x, y, z}, and similarly (2) givesTi = − 2

7Qij Ŝj . In C2v and
higher symmetry the angular dependence of the vectorsL andT is simplyK0+K1 sin2 ν,
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whereν = 6 Ŝ, ẑ. The remaining termELS in (28) is independent of the spin direction and
gives an energy shift.

4.2. Measurement with magnetic x-ray dichroism

The importance of the conjecture relating the MAE to the orbital moment and magnetic
dipole term is that these quantities can—in principle—be measured in an element-specific
way using magnetic circular x-ray dichroism (MCXD), which is the difference between
the x-ray absorption spectra with the light helicity vector parallel and antiparallel to the
magnetization direction [36, 38].

The MAE is obtained by taking the magnetization along the different principal axes,
e.g. for the contribution of the orbital moment term we have in C2v and higher symmetry

Ŝz · 〈L〉 − Ŝx · 〈L〉 = Rzz − Rxx (30)

where theR are found from the MCXD sum rules. For convenience we also define the
isotropic and anisotropic part of the orbital moment

L(0) ≡ 1
3(Rzz + Rxx + Ryy) (31)

L(2) ≡ 1
3(2Rzz − Rxx − Ryy). (32)

In MCXD, sum rules give the value of the momentsL, S andT projected ontoP̂ ,
which is a unit vector pointing along the propagation direction of the circularly polarized
light [22]. The projected orbital moment is obtained from the integratedL2,3 dichroism
signal and the projected effective spin moment is obtained from the weighted difference
over the spin–orbit-splitL2 andL3 core levels

P̂ · 〈L〉 = − 4
3(A3+ A2)C (33)

P̂ · 〈Seff〉 ≡ P̂ · [〈S〉 + 7
2〈T 〉] = (A3− 2A2)C (34)

whereC is a constant which depends on the number of holes andA2,3 is the integrated
MCXD signal at theL2,3 edge. The values of the ground state moments can be obtained per
valence d hole by using the isotropic spectrum for the normalization, since the integrated
signal of the latter is proportional to the number of d holes [22]. Unfortunately,〈L↑〉 and
〈L↓〉 cannot be measured separately. Their relative contributions can be estimated using
theoretical models, such as band structure calculations. It has also been shown that this
information is contained in the first spectral moment of the MCXD spectra [39, 40].

In an anisotropic medium away from the principal axes the vectorsL andT are not
collinear with Ŝ. For the orbital moment we measure

P̂ · 〈L〉 = P̂ ·R · Ŝ = Rzz cosν cosγ + Rxx sinν sinγ (35)

whereν = 6 Ŝ, ẑ and γ = 6 P̂ , ẑ. When the applied magnetic field is strong enough to
saturate the sample (P̂ ‖Ŝ), (35) simplifies to

P̂ · 〈L〉 = Rzz cos2 ν + Rxx sin2 ν = L(0) + 1
2(3 cos2 ν − 1)L(2). (36)

A interesting and recent addition to the dichroic measurements is transverse magnetic
circular x-ray dichroism (TMCXD). Here, one makes use of the competition between the
crystal field interaction and the spin–orbit coupling to measure the anisotropy in the ground
state moments [41–43]. When the spins are forcefully aligned along a non-symmetry
direction by a saturating external magnetic field, the spin–orbit coupling tries to alignL
parallel toS, whereas the crystal field prefers an alignment of the orbital moment along
the easy direction of magnetization, which is along a principal axis of the periodic lattice.
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Consequently,L is no longer collinear withS, and has a component perpendicular toS
which can serve as a direct measure for the anisotropy in the orbital magnetic moment.
This transverse orbital component can be obtained directly by applying the sum rules to the
TMCXD spectrum, which is thus measured with a saturating magnetic field perpendicular
to the photon helicity vector. In this transverse geometry (P̂ ⊥ Ŝ) we measure

P̂ · 〈L〉 = 1
2(Rzz − Rxx) sin 2ν = 3

4 sin 2ν L(2) (37)

which is thus directly proportional to the orbital magnetic anisotropy. Likewise, the
transverse geometry enables us to separate the magnetic dipole term,T , describing the
anisotropy of the spin distribution, from the isotropic spin magnetic moment,S [41].

4.3. Relative magnitudes ofEL andET

The value ofE↓ (↑)L depends strongly on the filling of the spin subband. Because the
denominator in (11) contains the energy differenceε2− ε1 between states which are located
below and above the Fermi level the anisotropy is essentially determined by the states near
the Fermi level. Since forEL there are no cross terms between the two spin directions, we
can look at each spin band separately. The matrix elements ofL are given in table 1 for the
crystal-field-split d states. Those for p states are given for comparison in table 2. Diagonal
matrix elements are zero, because the crystal field wavefunctions have no imaginary part,
so that only the non-diagonal matrix elements which have1m = 0,±1 can be non-zero.

Table 1. Matrix elements〈di |ê ·L|dj 〉 with Lz = −i(x∂/∂y − y∂/∂x) and cyclic.

〈zx| 〈yz| 〈xy| 〈x2 − y2| 〈3z2 − r2|
|zx〉 0 −iêz iêx −iêy i

√
3êy

|yz〉 iêz 0 −iêy −iêx −i
√

3êx
|xy〉 −iêx iêy 0 2iêz 0
|x2 − y2〉 iêy iêx −2iêz 0 0
|3z2 − r2〉 −i

√
3êy i

√
3êx 0 0 0

Table 2. Matrix elements〈pi |ê ·L|pj 〉.
〈x| 〈y| 〈z|

|x〉 0 iêz −iêy
|y〉 −iêz 0 iêx
|z〉 iêy −iêx 0

The value ofET depends on both the quadrupole moment and the spin–orbit coupling
in the ground state. Since the latter is small, its main effect is to induce an alignment
between spin and orbital. The quadrupole momentQzz = l2z − 1

3l(l + 1) is diagonal in C2v

and higher symmetries. This givesQzz = 2 for thexy andx2 − y2 states,Qzz = −1 for
the yz andxz states andQzz = −2 for the 3z2 − r2 state. A positive value ofQzz means
that high values of|m| are occupied which makes the change distribution flat in thexy

plane and the preferred magnetization perpendicular to the plane. For a negative value the
charge distribution is elongated along thez axis and the preferred magnetization is in plane.
Spin–orbit interaction couplesQzz to the spin direction. In this way the anisotropy of the
spin influences the easy direction of magnetization.
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In ferromagnetic 3d metals, such as iron whereξ ' 0.05 eV and1Eex = ∼3 eV,
EL is about an order of magnitude larger thanET . In 4d metals the spin–orbit constant
increases along the series from∼0.03 to∼0.2 eV and in 5d metals from∼0.1 to∼0.5 eV,
so thatET becomes important. Thin films and clusters of the 4d metals Ru, Rh and Pd
show induced magnetism. Calculations show that the 5d metals Ir and Pt, in the monolayer
range, are magnetic when grown on Ag. However, no experiment has displayed any kind
of magnetism yet and more realistic calculations have suggested that spin–orbit effects kill
the magnetic moment [44].

4.4. Phase diagram

For a start consider two states with exactly the same orbital character but with opposite spin.
The expectation value of the orbital magnetic moment reverses with the spin direction, so
that for these two states〈L↓〉 = −〈L↑〉. However, 〈L↓〉 and 〈L↑〉 have opposite signs
in (28), so that the MAE is independent of the spin, i.e.EL ≡ E

↓
L = E

↑
L. Since also

ET is independent of the spin, the dependence as a function of band filling is the same
for majority and minority spin band. Therefore, the dependence of the MAE on the ratio
R = ET /(ET + EL) as a function of the d band filling can be captured in just a single
diagram.

We will illustrate the competition betweenEL andET by the example of an ultrathin
film extending in thexy plane. Figure 2 shows the diagram for the situation where the
xy and x2 − y2 orbitals have the strongest bonding, resulting in well separated bonding
and anti-bonding orbitals, which as a function of band filling will be filled first and last,
respectively. The 3z2− r2 orbitals lie mainly along the layer normal and formδ bondings,
which exhibit the weakest dispersion.

The variation of the MAE due toEL as a function of the number of electrons,n, in the
subband, can be found along the lineR = 0 in figure 2. Its dependence has been given by
Bruno [16] and Wanget al [11] and can be found with the help of table 1. Light (dark)
shaded regions correspond to negative (positive) values of the MAE favouring in-plane
(perpendicular) magnetization. The sign ofEL changes for 1/3 and 2/3 filled bands. An
almost filled or empty spin band gives a negative value ofEL, whereas a half filled band
gives a positive value. This picture is of course oversimplified: the reality depends also on
the details of the electronic structure. The behaviour as a function ofn is very different for
the spin-flip contribution,ET , displayed along the lineR = 1, which shows a sign change
when the subband is half filled. Filling the 3z2 − r2 state makes the value ofET positive,
whereas filledxy andx2 − y2 states make it negative. Thus theEL andET contributions
have the same effect on the MAE for an almost empty spin band, but give the opposite
effect when the spin band is almost filled. Therefore, in a nearly filled band metal which
has strong bonds in thexy plane, PMA is only expected whenET is large, such as for 4d
and 5d metals.

Figure 2 shows that for dominantEL there is a broad region centred aroundn = 2.5
with a strong preference for PMA. If we assume that all the holes are in the minority band,
this would indeed be in agreement with the experimental observations for the magnetic
anisotropy of 3d transition metal systems. Ferromagnetic Fe- and Co-based multilayers and
thin films often favour PMA [45], whereas Ni systems are usually in-plane magnetized.
However, such a single-band picture is too simple, since in reality there are also holes
in the majority band. Both sum rule and line shape analysis of MCXD spectra give spin
polarizationsP = (n↑ −n↓)/(n↑ +n↓) = 2S/nd of about 0.55, 0.65 and 0.7 for Fe, Co and
Ni metal, respectively [39, 40]. In a nearly filled d metal, such as Ni, the presence of holes
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Figure 2. Dependence of the MAE on the ratioR = ET /(ET + EL) as a function of the d
band filling wheren is the number of electrons in the spin subband. When the strongest bonds
are in thexy plane, the light (dark) shaded regions correspond to negative (positive) values of
the MAE favouring an in-plane (perpendicular) magnetization. Zero contours have been marked
by a thicker line. The diagram is valid for both spin bands, even though the expection values
of their orbital moments are opposite in sign. When the strongest bonds are in thez direction,
light and dark shades have to be reversed.

in the majority band with opposite orbital moment will decrease the total orbital moment
per hole, while the MAE per hole remains the same (cf figure 2). For materials where the
majority band is more than 2/3 filled, and the minority band is between 1/3 and 2/3 filled,
as is expected for Fe and Co metal,L↓ andL↑ will have the same sign (cf figure 2). This
results in a large orbital moment, but a reduced MAE. This is in agreement with recent
results which indicate that the MAE is smaller than expected from the measured orbital
moment when it is assumed that the majority band is completely filled [43]. Conversely,
one might also encounter situations where the total orbital moment is very small, but the
MAE is large, which can occur e.g. for Mn d5.

So far we have described only the case where the strongest bonds are in thexy plane.
In systems, where the interface means that the 3z2 − r2 orbital has the strongest bonding,
the situation presented above is reversed. Figure 2 still applies, but light and dark shades
should be reversed with the result that Co and Fe systems will now display a strong in-plane
magnetization, whereas Ni can show PMA. Note that the strain can dictate which bondings
are the strongest [46]. Finally, we should mention that in lower symmetries there can also
be a strong anisotropy within the plane of the film [47].

5. Conclusions

The recent renaissance in magnetic research following the discovery of magnetic phenomena
associated with artificially made thin films of transition metals, many of them specifically
based on anisotropic properties, such as perpendicular magnetic anisotropy and giant
magneto-resistance, made it timely to investigate the validity of the Bruno model [16]



3252 G van der Laan

and the importance of other possible contributions, such as the magnetic dipole term. The
magnetocrystalline anisotropy energy can be expressed in terms of the projected magnetic
momentsŜ · 〈L〉 and Ŝ · 〈T 〉. The contribution due to the orbital magnetization depends
most strongly on the character of the states near the Fermi level. In a proper analysis
of the MAE the orbital moments of the spin up and spin down bands have to be taken
separately into account. Only when the majority band is completely filled will the MAE be
proportional to the anisotropic orbital magnetic moment. The magnetic dipole term accounts
for the spin-flip contributions in the MAE. Its influence in 3d metals is much weaker than
the contribution due to the orbital moment, since it scales with the ratio of the spin–orbit
coupling over the exchange interaction. With the strongest bands in thexy plane, and the
orbital contribution as the dominant term, we find from theEL, ET phase diagram that
Fe and Co thin films are the most likely candidates for PMA, whereas Ni will be usually
in-plane magnetized. The expectation values of the orbital moment and the magnetic dipole
term can be obtained from MCXD using the sum rules. It is less straightforward to obtain
the contributions of the orbital moments separated by spin, but line shape analysis can open
up new avenues [39, 40].
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